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A CONTINUITY PRINCIPLE FOR CALIBRATION OF SCORES

WITHIN MASTERY ASSESSMENT SYSTEMS

Ledyard R Tucker

ABSTRACT

A continuity principle is suggested for scaling of assessment scores

from different levels of a multilevel mastery training program. In such

training programs students are self-paced and work at levels of tasks

appropriate for their levels of performance. The problem addressed in this

report concerns the scaling of assessment scores at different levels so as

to form a single basic scale. The solution proposed here invloves relative

scalings of the scores at different levels so that the mean converted score

over all students forms a smooth, continuous curve. The smoothness of this

mean curve is measured by higher order differences between consecutive

scores. Compl,tational procedures to obtain as smooth a curve as possible

are presented.



A CONTINUITY PRINCIPLE FOR CALIBRATION OF SCORES

WITHIN MASTERY ASSESSMENT SYSTEMS*

Ledyard R Tucker

This report concerns !caling of assessment scores from multilevel

mastery training programs in specified areas of study. Students in such a

program may be working in a self-paced manner on tasks appropriate to the

students' levels of progress. A number of diagnostic observations may be

made during students' work on tasks with feedback being given. In

addition, assessments may be made of students' work during the time of

their performance. Students advance from one level to another based upon

their assessment scores. Students could be set back to previous task

levels based on poor assessment scores. There is a problem of scaling

these assessment scores from task level to task level to form a combined

scale. One suggestion to accomplish this scaling involves a principle of

continuity from level to level.

*Discussions of the problems with Peter Pashley and Charles Lewis were

extremely helpful. Their contributions are gratefully acknowledged.
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Introduction

A training program is conceived, here, as composed of a series of

sessions which may be divided into subsessions during which each student

works on a task. When student activity is self paced, different students

may work on different tasks during a session. The unit of activity is

termed, here, as a subsession with records being kept by subsession. A

subsession may be considered analogous to a trial in an experiment. (The

term trial is used in simulation, Monte Carlo studies to be described

later.) A major score and, possibly, several diagnostic scores are derived

from the behavior of a student in perfcrmance of a task. These scores need

not be derived from tests composed of items. For example in a psycho-motor

experiment involving a tracking task, time on tar.7et could be a score for

each trial. These scores are reflections of qualities of performances on

tasks. Each type of score is taken to be a complex composite of skills

which are being trained. Each skill may be dependent, in part, on several

latent traits, both abilities and personality traits, with the nature of

this dependency shifting as the training progresses. Further, the levels,

or scores, on these latent traits may change as influenced by the training

program. Thus, each type of score is quite complex over a series of

subsessions. This poses considerable problems in linking scores over

different tasks, especially tasks at different levels of difficulty and

complexity.

There may be a collection of more or less equivalent tasks at a given

level so that students working at this level do not repeat a fixed task for

that level. Scores on these tasks may be equated by any of several

experimental methods. One such method would involve dividing, randomly, a
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sample of individuals with equivalent backgrounds into subsamples. Each

subsample would work on one of the tasks at a defined level. Scores of the

students in these subsamples could be used to equate the scores for the

several tasks. In this approach, scores on other common variables could be

used as covariats to reduce sampling error.

Major consideration was given in the present study to linking score

scales on tasks at different levels. The complexities referred to in a

preceding paragraph along with the need to consider task sc)res in general

eliminate presently available calibration procedures. Only a principle

which we may term score scale continuity appears to remain. By this term

we mean to include smoothness of function of scaled scores of individual

performances as related to extent of work on the learning topic. With this

principle there should be no major discontinuities, either jumps in score

values or drops associated with going from a lower level task to a higher

level task. Further, there should be no drastic changes in slope of

performance curves at junctions between task levels; general trends should

be maintained. There is no necessary requirement that the trend be

increasing even though this would be desirable. The major conception is

the smoothness of the function of performance on extent of practice.

Investigation of the applicability of this principle was accomplished

with a series of simulation, Monte Carlo studies. In these studies a plan

for implementation was developed along with tentative computational

procedures. Four types of simulation systems were used ranging from a yery

simple situation :lvolving only a general learning function to increased

complexity of learning situations. Discussion of simulation system type I

will present the general pattern of operations. Simulation system type 2
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introduces errors of measurement and a system for individual review and

trials at the advanced level. Simulation system type 3 introduces specific

skills for each of two levels of tasks. Simulation type 4 introduces

differences in learning functions for different simulated individuals.

There were early learners and late learners. Each simulation system type

will be discussed in a separate section.

Simulation System Type 1

In the present simulation system, type 1, a single general latent

trait was conceived on which individual scores increased with practice.

There were two levels of rasks with the second level, in comparison with

the first level of task, being more difficult and having an observed score

for which the unit of measure was smaller (as a consequence, the standard

deviation was larger). A series of 15 trials was employed with each

simulated individual working on a task at each trial. Performance of a

simulated individual on a task yieldr ln observed score. Each such

individual started on task level 1 and continued at this level until its

observed score equalled or exce4ed a cutting score at which time it was

advanced to task level 2. If a simulated individual's performance on task

level 2 was below a cutting score for that task, it was returned to task

level 1. In simulation system type 1 all switching between task levels

occurred as described above. In subsequent simulation system types

additional switching between task levels was enforced to provide either a

look ahead from task level 1 to task level 2 or a r2view of task level 1

for an individual working at task level 2. This additional task level

switching did not take place in simulation system type 1. A result for

each simulated individual was a series of scores, some on task Level 1 and
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some on task level 2. The object of the analysis was to provide a

conversion of task level 2 scores such that a combined series of scores,

task level 1 scores and converted task level 2 scores, appeared to be on a

single scale. A linear conversion was employed for this purpose.

TABLE 1

PARAMETERS FOR SIMULATION SYSTEM TYPE 1

RANDOM SCORE RANGES

Initial Score 5 to 25

Asymptote 35 to 55

TASK LEVEL 2 SCALING COEFFICIENTS

Additive -20.0

Multiplicative 1.25

CUTTING SCORES

Task Level 1: 30 to Advance to Task Level 2

Task Level 2: 27 to Remain at Task Level 2

SAMPLE SIZE: 1000

Tables 1, 2, 3 and 4 pertain to simulation system type 1, run -.

Parameters for this run are given in Table 1. Two, independent, random

scores were drawn for each simulated individual; the trait score at trial 1

and the asymptote trait score. Each of these scores ','as drawn from a

triangular distribution having the ranges given in Table 1. Trait scores

on the trials were generated by a two parameter, negative exponential
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learning function. Level I observed scores equalled the trait scores. For

task level 2, the observed scores were a linear transformation of the trait

scores fo7 the trials, this transformation using the listed scaling

coefficients. There were two cutting scores: a task level 1 score to

advance to task level 2 and a task level 2 score to remain at task level 2.

A sample of 1000 simulated individuals was run.

TABLE 2

EXAMPLES OF INDIVIDUAL SCORES

SIMULATION SYSTEM TYPE 1

Indi- Task Trial
vidual level 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 20 30 -- 38 --

2 -- -- 24 29 30 30 31 31 31 31 31 31 31 31
C* 20 30 35 38 39 40 40 41 41 41 41 41 41 dl 41

2 1 12 20 27 32 39

2 -- 25 -- 31 33 35 36 37 38 38 39 39

C* 12 20 27 32 36 39 41 43 44 45 46 47 47 47 47

3 1 13 21 26 29 31 -- 33 33 -- 33 -- 34 -- 34
2 -- 20 21 -- 22 -- 22 -- 22 --

C* 13 21 26 29 31 32 33 32 33 34 33 34 34 34 34

4 1 18 29 34 --

2 -- 27 30 31 32 33 33 33 33 33 33 33 33
C* 18 29 34 38 40 41 42 43 43 43 43 43 43 43 43

*Task level C contains task level 1 scores and converted task level 2
score.s; conversion coefficients: a 15.5; b .82.

Scores for four simulated individuals are given in Table 2. Look at

rows for task levels 1 and 2; ignore, for the present, rows labeled C.
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Individual 1 started on task level 1 and by trial 2 had a score equal to

the task level 1 cutting score; consequently this individual was advanced

to task level 2 for trial 3. However, this individual's level 2 score on

trial 3 was less than the cutting score to remain at task level 2;

therefore, this individual was returned to task level 1 for trial 4. Its

trial 4 score again exceeded the task level 1 cutting score so it was

advanced to task level 2 for trial 5. This individual remained at task

level 2 for the remaining trials. This individual's performance is shown

in the upper graph of Figure 1. Look at only the circles for observed task

level 1 scores and x's for observed task level 2 scores. Ignore, for the

present, the triangles.

Simulated individual 2 had a similar record to simulated individual 1

except that it took four trials before the first switch to task level 2.

Simulated individual 3 had a different kind of record in that this

individual alternated between the two task levels. Evidently this

individual's asymptote was such that it could perform task level I

satisfactorily but not task level 2. This individual's performance is

shown in the lower graph of Figure 1. Simulated individual 4 is an

illustration of an individual which did not switch back to task level 1

once having achieved task level 2.

A conversion for task level 2 scores was computed by a procedure to

be described in a subsequeLt paragraph. Coefficients for this linear

conversion are given at the bottom of Table 2; a is an additive coefficient

and b is a multiplicative coefficient. A pelfect inverse transformation
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from the scaling coefficients would have a - 16 and b - .8 . The values

given in Table 2 were obtained from the sample data. Row C scores in Table

2 for each simulated individual have task level 1 scores when the

individual worked on this task and converted task level 2 scores when the

individual worked at task level 2. The scores in row C form the combined

score vector for the simulated individual. In Figure 1 the converted task

level 2 scores are indicated by triangles -o that each combined score

vector is a series of circles and triangles. Note that the combined score

vectors are quite continuous.

Various experimental conversion coefficients may be tried to obtain

corresponding experimental combined score vectors. One such vector for

each individual could be recorded in an experimental combined score matrix

having a row for each individual and a column for each trial. A mean

combined score vector could be obtained from this matrix, 1:his vector would

have the mean score for each column, or trial. The top half of Table 3

presents information for experimental conversion coefficients a - 0.0 and b

= 1.0 , this being equivalent to applying no conversion to task level 2

scores, that is, using the original task level 2 scores. Figure 2 presents

the series of mean scores (x's connected by lines) when the original task

level 2 scores are used.

One way to look for continuity in such a vector is to examine

differences between successive mean scores. Level of differences I are the

mean gains from trial to trial; for example, trial 2 mean of 23.9 minus

trial 1 mean of 15.0 is 8.9 which is recorded as level of differences 1 in

the row for trial 2. The 4.0 in row 3 is the mean gain from trial 2 to

trial 3. The remaining entries in level of differences 1 are the

BEST COPY AVAILABLE



-10-

TABLE 3

COMBINED TRIAL MEANS AND DIFFERENCES*

Level 2
Trial

SIMULATION SYSTEM TYPE 1, RUN 1

Conversion Coefficients: a = 0.0; b =
Mean Level of Differences

1.00

Score 1 2 3 4 5

1 15.0

2 23.9 8.9

3 27.9 4.0 -4.9
4 28.5 .6 -3.4 1.5
5 30.1 1.7 1.0 4.4 3.0
6 30.2 .1 -1.6 -2.6 -7.1 -10.0
7 30.3 .1 .0 1.6 4.2 11.3
8 30.7 .4 .3 .3 -1.3 -5.5
9 31.0 .3 -.1 -.4 -.7 .7

10 31.0 .0 -.3 -.2 .2 .8

11 31.2 .3 .3 .7 .9 .7

12 31.2 -.1. -.4 -.7 -1.3 -2.2
13 31.5 .3 .4 .8 1.4 2.8
14 31.2 -.2 -.6 -1.0 -1.7 -3.1
15 31.6 .3 .6 1.1 2.1 3.8

RMSD 2.7 1.8 1.7 2.9 5.4

Level 2 Conversion Coefficients: a - 15.5; b - .82
Trial Mean Level of Differences

Score 1 2 3 4 5

1 15.0

2 23.9 8.9

3 29.3 5.5 -3.4
4 32.8 3.4 -2.0 1.4
5 35.0 2.2 -1.2 .8 -.6

6 36.5 1.5 -.7 .3 -.3 .3

7 37.5 1.0 -.5 .3 -.2 .1

8 38.2 .7 -.3 .2 -.1 .1

9 38.7 .5 -.2 .1 -.1 .0

10 39.0 .4 -.1 .1 -.1 .0

11 39.3 .3 -.1 .1 .0 .0

12 39.5 .2 -.1 .1 .0 .0

13 39.6 .1 .0 .0 .0 .0

14 39.7 .1 .0 .0 .0 .0

15 39.8 .1 .0 .0 .0 .0

RMSD 3.1 1.2 .5 .2 .1

*Inconsistencies in the last digits are due to rounding.
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differences between consecutive trial means. Level of differences 2 are

obtained from level of differences 1. Each entry in level of differences 2

is the difference between consecutive entries in level of differences 1.

Level of differences 2 are changes in level of differences 1. A similar

process of differences of differences may be continued to obtain further

levels of differences, each level of differences being obtained from the

just preceding level of differences. Thus, level of differences 3 entries

are computed from level of differences 2 entries. In Table 3 this process

was carried out to level of differences 5. Note some irregularities in

each column of level of differences. This is taken as evidence of lack of

continuity in the vector of mean combined scores.

At the bottom section of Table 3, results are given using

experimental conversion coefficients obtained by a procedure to be

described subsequently. Not only are the columns for levels of differences

more regular than are the columns in the top half of the table, but also,

after level of differences 1, the values are smaller in the lower half than

in the upper half of the table. This is especially true for level of

differences 5. A measure of the size of entries in each column is obtained

with an RMSD statistic. This statistic is obtained by taking the sum of

squares of the values in a column, dividing this sum by the number of

values in the column and taking the square root. At the bottom of each

section of the table is a row of RMSD statistics. For each pair of

experimental conversion coefficients and level of differences there would

be an RMSD statistic. Note in Table 3 the RMSD coefficients, after level

of differences 1, are smaller in the lower half than in the upper half of

the table. Continuity of the mean vector could be indicated by small RMSD
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coefficients in selected levels of differences. Thus, a solution to the

conversion problem could be to find the experimental conversion

coefficients which yield a minimum RMSD. There remains a problem in

selection of the level of differences to be considered. For simulation

system type 1, run 1 the level of differences 5 was selected since its

minimum RMSD was less than for preceding levels of differences.

Figure 2 presents the two mean vectors listed in Table 3.

Pictorially, both series of mean val es appear fairly smooth with the one

using converted task level 2 scores appearing slightly smoother at trials

3-5. Use of the levels of differences picked out several irregularities.

A method for solution for minimum RMSD at a given level of differences was

developed and a computer program was written. Table 4 presents for each

TABLE 4

CONVERSION COEFFICIENTS FOR MINIMUM RMSD

AT LEVELS OF DIFFERENCES 1 THROUGH 5

SIMULATION SYSTEM TYPE 1, RUN 1

Level of
Differences a

Coefficients
b RMSD

1 -11.56 1.181 2.58

2 -2.98 1.767 1.07

3 16.67 .803 .4

4 14.93 .840 .22

5 15.50 .817 .10

level of differences 1 through 5 the conversion coefficients for minimum

RMSD for simulation system type 1, run 1. Results for levels of

differences 1 and 2 are quite distinct from the results for the higher
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levels of differences. For these first two levels of differences there are

negative additive constants which appear to be unreasonable for an

acceptable solution. However, the RMSD statistics for these two levels of

differences are somewhat higher than the RMSD statistics for the subsequent

levels of differences. In the simple case of this type of simulation a

theoretic conversion may be derived from the scaling coefficients used in

generation of the data. This is an inverse transformation from the scaling

transformation and has conversion coefficients a 16 and b = .8 . The

experimental conversion coefficients at levels of differences 3 through 5

approximate these theoretic coefficients. Level of differences 5 was

selected to yield solution conversion coefficients since the RMSD was least

at this level of differences.

Simulation System Type 2

Simulation system type I was exceedingly simple. Two features were

added to produce simulation system type 2: errors of measurement were

introduced and a plan for review and look ahead was implemented. In

simulation system type 1, scores on the two task levels were compared only

at the margin when individuals switched from a task at one level to a task

at the other level. There was no opportunity to compare scores on the two

levels of tasks at either lower scores or at higher scores. Charles Lewis

suggeLted that score comparisons could be strengthened with observations at

both the lower scores and higher scores ranges. This is accomplished with

the plan for review.and look ahead. Table 5 gives parameters for

simulation system type 2. This table may be compared with Table 1.

Measurement errors with a range from -1 to +1 were inserted. The other
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score ranges were not changed and the task level 2 scaling coefficients

were not altered. There was some adjustment in the cutting scores.

TABLE 5

PARAMETERS FOR SIMULATION SYSTEM r.:PE 2

RANDOM SCORE RANGES

Initial Score 5 to 25

Asymptote 35 to 55

Measurement Error -1 to +1

TASK LEVEL 2 SCALING COEFFICIENTS

Additive -20.0

Multiplicative 1.25

CUTTING SCORES

Task Level 1: 32.5 to Advance to Task Level 2

Task Level 2: 25.0 to Remain at Task Level 2

MAXIMUM NUMBER OF CONSECUTIVE TRIALS:4

SAMPLE SIZE: 1000

maximum number of consecutive trials at a given level of task was

introduced to implement the review and look ahead plan. The sample size

was kept at 1000.

Examples of simulated individuals' trial scores are given in Figure

3. The individual in the upper graph achieved the task level 1 cutting

score at trial 3 and was advanced to task level 2 at trial 4. Its

performance continued above the task level 2 cutting score to return to

task level 1. After four trials at task level 2, this individual was given
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a review on task level 1 at trial 8 where its performance was sufficiently

high to be advanced again to task level 2. Another review of task level 1

was given at trial 13. These reviews provide score comparisons at a higher

score range. The simulated individual's performance illustrated in the

lower graph is an example of a lesser ability individual which alternated

between the two task levels.

Figure 4 shows two combined mean score vectors: one using the

original task level 2 scores and the other involving conVerted task level 2

scores. In comparison with the combined mean vector graph in Figure 1 for

the mean vector using original task level 2 scores, the corresponding mean

vector for simulation system type 2 shown in Figure 4 is much more

irregular. A possible cause is the adjustment of the cutting scores.

Again, however, the conversion of the task level 2 scores provided a very

smooth mean vector as shown in Figure 4.

TABLE 6

CONVERSION COEFFICIENTS FOR MINIMUM RMSD

AT LEVELS OF DIFFERENCES 1 THROUGH 5

SIMULATION SYSTEM TYPE 2, RUN 1

Level of Coefficients

Differences a b RMSD

1 17.51 .642 3.31
.2 15.83 .814 1.18
3 16.09 .796 .45
4 16.10 .795 .19
5 16.11 .795 .13



50 -

45

40 -

-

20 -

15 -

10 -

0

0

A A.
A A A 0 AA 0 A A

50 -

-

40

35

30 -

0 25 -o

20 -

15

10 -

0 2 4 5 6 7 8 9 10 11 12 13 14 15

0

0
0 A

Trial

00 A A A 0 A
A 0 A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Trial

0 0 0 Original Scores; Task Level 1
x x x Original Scores; Task Level 2
A A A Converted Scores; Task Level 2

Figure 3. Examples of individual performances;
simulation system, type 2.



50

45

40

35

30

c.)
C/) 25

20

15

10

5

I

0 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15

Trial

x x Using Observed Task Level 2 Scores
eee. Using Converted Task Level 2 Scores

Figure 4. Mean scores for simulation system, type 2, run 1;
conversion coefficients: a = 16.1, b = .80.



-19-

The record of conversion coefficients for minimum RMSD at levels of

differences 1 through 5 is given in Table 6. The computed conversion

coefficients stabilize from level of differences 2 onward with the least

RMSD occurring at level of differences 5. For this example of a simulation

system the computed conversion coefficients are much closer to the

theoretically derived coefficients of a 16 and b .8 than for the

example of simulation system type 1. Sampling studies have not been

carried out; however, a conjecture is possible that the -sampling variance

of the conversioncoefficients would be much greater for simulation system

type 1 than for simulation system type 2. This may be the result of the

more extensive score comparisons at higher score ranges with the review and

look ahead program in simulation system type 2.

Simulation System Type 3

A feature added in simulation system type 3 was the inclusion of

specific traits for each of the task levels. 'The true scores on each task

level were a combination of a general trait and a specific trait. There

was a separate specific trait for each task level. Dependence on the

specific trait dwindled as an individual had experience at the task level.

Experience at one task level did not affect the dependence of the other

task level on its specific. Thus, there was a shifting of dependence on

the general trait and the specific traits. Growth on the general trait

occurred at every trial while growth on each specific trait occurred only

on the trials involving the particular task level. Parameters used in

simulation system type 3 are given in Table 7. There are separate score

ranges for the general trait and the specific traits. Otherwise, the
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parameters for this simulation system type are the same as for simulation

system type 2 with exception of adjustments in che cutting scores.

Examples of performances of two simulated individuals are given in

Figure 5. A particular point is that the specific traits started out quite

low so that scores on early trials were reduced due to the dependence on

the specific traits. As the dependence on the specific traits decreased,

this decrement reduced. Note that the observed scores on task level 2 are

considerably below the scores on task level 1 in early ttials and that this

TABLE 7

PARAMETERS FOR SIMULATION SYSTEM TYPE 3

RANDOM SCORE RANGES

General Initial Score 5 to 25

General Asymptote 35 to 55

Specific Initial Score 1 to 16

Specific Asymptote 35 to 55

Measurement Error -1 to +1

TASK LEVEL 2 SCALING COEFFICIENTS

Additive -20.0

Multiplicative 1.25

CUTTING SCORES

Task Level 1: 32.0 to Advance to Task Level 2

Task Level 2.: 20.0 to Remain at Task Level 2

MAXIMUM NUMBER OF CONSECUTIVE TRIALS: 4

SAMPLE SIZE: 1000
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decrement reduces as the trials progress. Other than the influence of the

specific traits, the data for the illustrative examples are similar to the

data for the preceding simulation system types.

Figure 6 gives the combined mean vecto.s. This time the vectol using

the observed task level 2 scores is much more ragged. However the

conversion of the task level 2 scores produces a quite continuous function.

Conversion coefficients summary for minimum RMSD at the succession of

levels of differences is given in Table 8. There is not'a large

variability in these coefficients associated with level of differences.

However, the least RMSD occurs at level of differences 3. A suggestion is

to use the coefficients at that level of differences for which the RMSD is

least. This time, there are no known theoretic conversion coefficients

with

TABLE 8

CONVERSION COEFFICIENTS FOR MINIMUM RMSD

AT LEVELS OF DIFFERENCES 1 THROUGH 5

SIMULATION SYSTEM TYPE 3, RUN 1

Level of
Differences a

Coefficients
b RMSD

1 30.52 .320 3.51

2 231.46 .340 1.22

3 331.44 .337 .68

4 431.42 .339 1.05

5 531.37 .343 1.80
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which to make a comparison. The effects of the dwindling influences of the

specific traits has had an unknown extent of effect on the conversion.

RE:turn to Figure 5. As in the previous simulation system types, the

converted task level 2 scores tend, strongly, to form a continuous function

which the task level 1 observed scores. The developed conversion appears

to be satisfactory at the individual level.

Simulation System Type 4

The present type of simulation system was designed for an

introductory look at another kind of complexity in which individuals did

TABLE 9

PARAMETERS FOR SIMULATION SYSTEM TYPE 4

RANDOM SCORE RANGES

Learning Curve Multiplier 35 to 55

Measurement Error -1 to +1

TASK LEVEL 2 SCALING COEFFICIENTS

Additive -10.0

Multiplicative 1.50

CUTTING SCORES

Task Level 1: 32.0 to Advance to Task Level 2

Task Level 2: 20.0 to Remain at Task Level 2

MAXIMUM NUMBER OF CONSECUTIVE TRIALS 4

SAMPLE SIZE 1000
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not all follow the same learning function. In this type of simulation

there are early learners and late learners with none in between. The mean

function is followed by not one individual. Two basic learning functio.,s

are used with each individual being assigned to one or the other function

on a random, 50-50 basis. An individual's true score on a trial was the

basic learning function value for the trial times a multiplier for that

individual. The range for these random multipliers is given in Table 9

which contains the parameters for this type of simulation system. At each

trial for each individual a random measurement error was added to that

individual's true score. Other parameters include the cutting scores for

the two task levels, one to advance from task level 1 to task level 2 and

the other to remain at task level 2. The program of review and look ahead

was continued with a maximum number of consecutive trials at either task

level. Sample size was 1000 .

Table 10 presents the two types of learning curves and the mean.

Again, not one of the simulated individuals followed the mean curve. These

basic learning curves are pictured in Figure 7. Type 1 learning curve is

an early learning function while type 2 learning curve is a late learning

function. The mean is half way between the two types of leerning curves

and represents not one individual. These learning curves are completely

arbitrary and do not necessarily follow any mathematical function. They

were written by the experimenter.

Figure 8 presents results for two simulated individuals. The upper

illustration is for one of the early learners while the lower graph is for

one of the late learners. Evidently, the scaling coefficients used for

task level 2 made scores at this level on later trials higher than scores
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on task level 1. This may illustrate, also, the possibility of inaccurate

judgments of task difficulty. The procedure for continuity should work

properly with such inversions of task difficulties.

Figure 9 presents the two mean curves for run 1 of this type

TABLE 10

LEARNING CURVES

SIMULATION SYSTEM TYPE 4

Mean Learning CurvesBasic Learning Curves
Trial 1 2 Mean

1 .200 .100 .150

2 .420 .130 .275

3 .580 .160 .370

4 .680 .200 .440

5 .760 .260 .510

6 .820 .340 .580

7 .860 .480 .670

8 .890 .680 .785

9 .920 .860 .890

10 .940 .920 .930

11 .960 .950 .955

12 .980 .970 .975

13 .990 .980 .985

14 1.000 .990 .995

15 1.000 1.000 1.000

Theoretic Observed*

6.7 6.7

12.4 12.3

16.7 16.6

19.8 19.7

23.0 22.7

26.1 26.2

30.2 30.3

35.3 35.4

40.0 40.0

41.9 42.3

43.0 43.4

43.9 44.4

44.3 44.7

44.8 44.8

45.0 45.5

*Task level 2 conversion coefficients: a - 5.99, b - .69.

ti
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simulation system. As previously noted, the task level 2 obtained scores

are higher than the task level 1 scores which makes the curve using the

original task level 2 scores higher than the curve involving the converted

task level 2 scores. While not one simulated individual followed the mean

learning function, the combined mean vector using the converted task level

2 scores is quite continuous.

Table 11 contains the summary of conversion coefficients for minimum

RMSD at the various levels of differences. After level of differences 1

the conversion coefficients have very little variability associated with

level of differences. Since the least RMSD occurred at level of

differences 3, the conversion coefficients at this level were used to

convert the task level 2 scores. This conversion appears to work well for

the simulated indtviduals as well as for the mean vector as is shown by the

graphs in Figure 8. The mean combined score vector is used only as a

TABLE 11

CONVERSION COEFFICIENTS FOR MINIMUM RMSD

AT LEVELS OF DIFFERENCES 1 THROUGH 5

SIMULATION SYSTEM TYPE 4, RUN 1

Level of
Differences a

Coefficients
b RMSD

1 7.31 .641 3.26

2 6.16 .688 .98

3 5.99 .693 .92

4 5.93 .696 1.14

5 5.95 .696 1.66



-31-

device to look at the continuity principle. This use does not imply that

the mean combined score vector represents any individual. A comparison is

given in Table 10 between a theoretic mean curve and the observed mean

curve. This theoretic mean curve is the mean individual multiplier times

the mean basic curve.

Some preliminary Monte Carlo runs were made for simulation system

type 4 as an initial investigation of stability of the developed conversion

over sampling of individuals. The results appear to be very positive with

very small sampling variability. More extensive Monte Carlo studies might

be warranted with more complex simulation systems which more closely

approach real observed phenomena.

Discussion

Calibration of measures from level to level in educational programs

has been a long standing problem. From a lower level to a higher level the

material and tasks may be greater both in difficulty and in complexity so

that the assumption of unidimensionality of traits across levels of

education is not warranted. Further, an educational program may have

effects of increasing scores on latent traits (often concetved as factors

in factor analytic theory). A principle of continuity of individual scores

when individuals change fror one level of task to another is proposed in

this project as one method to ameliorate calibration problems in prolonged

educational training programs. This principle is intended to include the

concept of smoothness of function of performance on learning time. Thre

should be no jumps or drops in this function at changes in task level nor

should there be drastic changes in the slope of this function. There is no

BEST COPY AVAILABLE
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requirement that the measures obtained at different levels of tasks be

unidimensional in a continuation sense.

In our simulation system type 3, the two tasks had different specific

traits in addition to a general trait. Scores on each of these traits

increased with experience of the simulated individuals. In this example

the influences of the specific traits were made to dwindle with practice so

that effects of the general trait became dominant. In many psycho-motor

type tasks, many experiments indicate the reverse to be more nearly true,

the task specifics become dominant with practice. In cognitive

development, quality educational programs should lead to enhancement of

general traits with reduction of influences of task specifics. Application

of the principle of continuity appeared to produce a satisfactory

calibration of scores on task level 2 to be commensurate with observed

scores on task level 1 in simulation system type 3.

The simulation system used in the present project involved a single

general trait which carried over from one task level to another. Such a

general trait could be a complex of more fundamental latent traits.

Further, the dependencies of such a general trait could shift with

experience of the individuals and there could be a shift in these

dependencies from task level to task level. In addition scores of

individuals on these more fundamental traits could be changing. Simulation

systems to emulate these more complex situations could be written but would

be quite long and involved. Such simulation systems were not attempted in

the present project. Trials wi'-h such extended simulation systems could be

informative and be accomplished in future projects.
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The first three types of simulation systems used the negative

exponential growth function in generation of individual data. However, the

mean curves did not follow this function so that the success of the

procedure was nc.,t linked directly to this growth function. In simulation

system type 4 the mean curve was far from a negative exponential function.

Apparently, the major requirement is that the combined mean curve be

increasing, monotonic. This should not greatly restrict application of the

principle of continuity.

During the development of the suggested procedure statistics other

than the combined mean vector were explored. Similar to the combined mc:.n

vector, a vector of trial variances was considered. The task level 2

scores were converted by experimental conversion coefficients and the

variances of scores for the trials were computed. Such vectors appeared

not to yield results much different from those obtained with the combined

mean vectors. Another area of investigation was the structure of

generalized learning curves as per Tucker (1966). Again, no new

information was apparent; however, this approach should be investigated for

more complex situations.

Application of the principle of continuity probably would involve

more than two levels of tasks. Procedures to extend the solution might be

developed in future studies. One suggestion might go as described in the

following. Make a tentative calibration of task level 2 scores to task

level 1 scores. Then calibrate task level 3 scores to combined scores on

task levels 1 and 2. If, there were only three task levels, then scores on

each of the task levels could be calibrated with the combination of scores

on the other two tasks. Such a procedure could be continued on a round
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robin program until overall stability was obtained. Some attention would

be necessary to avoid scale drift during such iterations.

Only minimal attention was given in the present project to effects of

sampling of indtviduals. A future project should consider this area of

concern. A further question involves a possible requirement for complete

data for each individual. How should incomplete data be handled? This

question deserves further study to implement applications.

Experiments with real data would be highly desirable to provide

information relevant to applications.
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TECHNICAL NOTES

I The calibration problem

These notes will consider the calibration of scores on task level 2

to be comensurate with scores on task level 1. Observed scores are

designated y6, fot an individual. A subscript for individual is not used

for convenience. Task levels are designated as m 1,2. Trials are

designated k = 1, 2, . ,n. Each individual has a score for each trial on

either task level 1 or task level 2, never on both task levels. Task level

2 scores are to be converted to be comensurate with task level 1 scores. A

linear conversion is used:

5rak a + bya (TN-1)

where ".-r2k is the converted score. Note that the task level 1 scores are

used as observed so that:

f.7.1k Ytk (TN-2)

An individual combined score vector, contains the 571k for trials when task

level I was assigned to the individual and 5 for trials when task level 2

was assigned. The callbration problem is to determine the conversion

coefficients a and b so that each and every combined score vector is as

smooth and continuous as possible. Of course, there may be occasions when

such a solution leads to unsatisfactory results.
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II General plans for generation of simulated data

Generated scores for a simulated individual are indicated as follows.

Skill score xi,* for task level m 1, 2 and trial k 1,2,...,n.

True task score ta:

tmk = fm glAl* (TN-3)

where f. and g. are scaling coefficients.

Observed task score y.k:

Yrak ttok etok (TN-4)

where erni, is a random error of measurement.

In the real world, skill score x6, is the value of a latent

variable for the individual. In simulations, xrnk is

computed by procedures defined by the simul,ation system and

depends upon random parameters for the simulated individual.

Each individual is assigned to work at task levels according to th;;

following plan.

Start at task level 1 and continue until the individual's

observed score exceeds a cutting score yic or is advanced for

experience in work at task level 2 after a given number of

trials at task level 1.

When working at task level 2, remain at this level unless the

individual's score is Jss than a cutting score y2c or the
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individual has worked at this level for a given number of

trials and was scheduled for a review at task level 1.

Parameters in the simulation systems

yic : cutting score to advance from task level 1 to task

level 2.

y2c : cutting score to remain at task level 2.

Maximum number of trials to remain at a given task level.

To facilitate subsequent computations a score vector v is set up for

each individual with 4n elements composed of the following 4

sections. Each section has n elements.

8 dummy variables for the trials with score = 1 if the individual

was assigned to task level 1, otherwise 0.

: scores on task level 1 if the individual was assigned to that

level, otherwise = 0.

dummy variables for the trials with score = 1 if the individual

was assigned to task level 2; otherwise = 0.

12 : scores on task level 2 if the individual was assigned to that

level of task; otherwise = 0.

A mean vector M, and mean product matrix P, are accumulated over the

individuals. The mean vector and mean product matrix have sections

corresponding to the sections of vector v.



-TN4-

III Statistics for combined score vectors

A combined score vector 2 was defined in section I with converted

scores defined in equations (TN-1) and (TN-2). For any given pair of

calibration coefficients a and b, a combined score vector may be obtained

using the score vector v defined in section II and a matrix W (n x 4n)

defined as follows:

W [0, I, A, 13) (TN-5)

where 0 is an (n x n) null matrix; I is an (n x n) identity matrix; A is an

(n x n) scalar matrix containing coefficient a in the diagonal; and B is an

(n x n) scalar matrix containing coefficient b in the diagonal. Since

vector sections 81 and yi have zero entries when the individual was assigned

to task level 2 while sections 82 and y2 have zero entries when the

individual was assigned to task level 1, the operations of equations (TN-1)

and (TN-2) may be combined to yield the combined score vector 2 by:

2 - vw'
(TN-6)

where -Sr" and v are row vectors.

Since equation (TN-6) is a linear transformation, the combined score

mean vector Hy may be obtained from the mean vector M, by:

(TN-7)
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Note that MI and Mv are row vectors Also due to the linear transformation,

the mean product matrix for the combined scores may be obtained from the

mean product matrix P by:

P = IsTPVI '
YY

(TN-8)

The variance of the combined scores for each trial may be obtained

fr3m the corresponding diagonal entry in Pw and the corresponding mean in

M. These variances may be recorded in a vector termed VAR.
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IV Testing for smoothness by vector differences

The present discussion will focus on the relation of the combined

score means to the trials. A similar development applies to the trial

variances in vector VAR . Combined score means, 5Tk, are taken to be

measured on a continuous scale while the trials are taken to be discrete

points on a time-like dimension. Combined score means form a dependent

variable while trials form an independent variable. In cases when both the

independent variable and the dependent variable are continous, derivatives

are indicative of properties of the functional relation with the first

derivative being the rate of change, the second derivative being the

acceleration, third and higher derivatives being indicators of

irregularities such as jerks or jumps. In the case when the independent

variable exists only at equally spaced points, differences between values

of the dependent variable take the place of the derivatives.

Table 3 presents two examples of combined mean vectors for simulation

system type 1. Each of these combined mean vectors is for a selected pair

of calibration coefficients. The vector differences are computed out to

the fifth level of differences. These differences may be defined by the

following equations. Let level of difference be indicated by j = 1,2,....

Let djk be the jth level difference at trial k
. The first level differences

are obtained from the combined mean values:

dlk 5.7k (k-1) for k 2,3,...,n. (TN-9)
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For second level of differences and higher, the values are obtained from

the preceding levels of differences. For j 2, 3,

dik d(j-l)k d(i-1)(x-1)
for k = (j+1),(j+2), . , n.

(TN-10)

The bottom row of each section of Table 3 gives the RMSD statistic for

the differences at each level of difference. These are the root mean

square statistics for the differences. Note that the number of differences

reduces with the level of differences, this number being (n j). The RMSD

statistic is used as a general index of the magnitudes of the differences.

Comparison of the differences between the two pairs of calibration

coefficients indicates a general reduction in the magnitudes of the

differences after level of differences 1.
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V Determination of calibration coefficients for minimum RMSD

For any given level of differences the RMSD stptistic can be

considered as a dependent variable with a bivariate surface on the

calibration coefficients a and b as independent variables. Table TN.1

presents values of RMSD for selected values of a and b for level 5 of

results for simulation system type 1. For each value of b there is a

minimum RMSD in the range tabled of a. This might be expected since a is

an additive constant which moves the converted task level 2 scores ap and

down. For a fixed value of b, there should be a best such translation of

the task level 2 scores. Deviation of the translation from this best value

should produce some jerk or drop in the combined score vector and lead to

an increase in the RMSD statistic for higher level differences. Note that

there are also minima in the rows for middle values of a. This surface

appears to be sufficiently regular to permit a solution for values of a and

b to yield a minimum RMSD.

Inspection of the RMSD surface indicated the possible use of a

parabolic interpolation procedure to determine for a given value of b the

value of a for a minimum RMSD. This procedure is incorporated in subroutine

VALA which may be inspected for details. The general idea is to use three

points on the function of RMSD on a. Fit a parabola to these three points

and solve for the Thcation of the value of a for a minimum of the parabola.

Then, the value of RMSD is computed for this new value of a. From these

results a revised three points are established and a new solution obtained.

This procedure is continued until a converged solution is obtained.



-TN9-

TABLE TN.1

ILLUSTRATION OF DEPENDENCE OF RMSD STATISTIC

ON CALIBRATION COEFFICIENTS

Simulation System Type 1; Combined Mean Vector

Value

Level of Differences =

Value of b

5

of a .4 .5 .6 .7 .8 .9 1.0 1.1 1.2

0 12.9 11.7 10.4 9.2 7.9 6.7 5.4 4.2 3.0

4 10.9 9.7 8.4 7.2 5.9 4.7 3.5 2.2 1.1

8 9.0 7.7 6.5 5.2 4.0 2.7 1.5 .4 1.2

12 7.0 5.7 4.5 3.2 2.0 .7 .6 1.8 3.1

16 5.0 3.7 2.5 1.2 .1 1.3 2.5 3.8 5.0

20 3.0 1.8 .6 .8 2.0 3.3 4.5 5.8 7.0

24 1.1 .5 1.5 2.8 4.0 5.6 .5 7.8 9.0

28 1.1 2.3 3.5 4.8 6.0 7.3 8.5 9.8 11.0

32 3.0 4.3 5.5 6.7 8.0 9.2 10.5 11.7 13.0
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For some details of this procedure, consider the general parabola:

y a + bx + cx2 (TN-11)

Solution for the value of x for the optimum y yields

(y3 y2)(xi xi) + (Yi Y2) (Xi xi)

X71 2[(y3 Y2)(x2 xl) (yi Y2)(x.3 x2)]
(TN-12)

where x, is the value of x at optimum y. Whether the optimum is a maximum

or a minimum depends upon the configuration of the three points (x1,y1),

(x2,y2) and (x3,y3). In the present application a minimum would be normal

from the configuration of values in each column of the RMSD surface.

The three points are chosen such that the x's are in ascending value

with y2 being less than both yi or y3. With an initial value of x2 there is

a search for such a series of points. When such a series of points has

been established, a value of x, (x new) is obtained by equation (TN-12).

Given x,, the actual value of y, is computed, not from the parabola but from

the observations. From the now four points a selection is made of the

three points i3 made such that the interval from xl to x2 is least and y2 is

less than the the other two y's. This procedure may be continued until the

difference between x, and x2 is less than some set tiny value.

The parabolic interpolation scheme was used to determine a for given

values of b to obtain minimum RMSD. Determination of b involved the same

procedure. This time the dependent variable y was the minimum value of

RMSD conditional on the value of b. Subroutine VALAB provides these

computations resulting in the solution values for a and b.
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A solution for a and b may be made at each of several levels of

differences and the value of RMSD computed. It appears that the level of

differences should be selected for which the minimum RMSD is least.
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V Exploration for structure of combined mean product matrix

Tucker's development of generalized learning curves (1966) forms the

basis for exploration for structure of combined mean product matrices. The

major idea is that optimum calibration coefficients should lead to least

complex structure of the mean product matrix. Inappropriate calibration of

task level 2 scores should induce complexities in this structure.

The major computational technique uses an eigen solution of each

combined mean product matrix. The series of eigenvalues may be inspected

for indications that there is a small number of relevant dimensions

involved in the matrix. See Table TN.2 for exampleE of series of

eigenvalues of combined mean product matrices obtained for simulation

system type 2, run 1, using two pairs of calibration coefficients. On the

left is the series when the raw task level 2 scores are combined with the

raw task level 1 scores. On the right is the series using the calibration

coefficients obtained for minimum RMSD of the combined mean vector, level 5

differences. There are several more moderate-sized eignvalues in the left

series than in the right series. This is indicative of a greater

complexity of the combined mean product matrix using the raw task level 2

scores than for the combined mean product matrix using the calibration

coefficients obtained from the combined mean vector. Inspection of such

series of eigenvalues is one means for evaluation of the complexity of

combined mean product matrices

Complexity of structure is indicated also in the eigenvectors of a

combined mean product matrix. Table TN.3 lists the first three

eigenvectors for the two combined
mean product matrices discussed in the

preceding paragraph. These eigenvectors are graphed in Figure TN.I. The
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differences in complexity are more apparent in the figure. Note the

considerable irregularities of the series of coefficients of the
_

eigenvectors for the combined mean product matrix using raw task level 2

scores. In contrast, the eigenvector coordinates form smooth series for

the combined mean product matrix using the optimum calibration coefficients

for combined mean vectors. Thus, the eigenvectors provide further

indications as to complexity of combined mean product matrices.

Ways to use the complexity of combined mean product matrices have not

been studied to any great extent. At a minimum, the complexity of a

resulting combined mean product matrix should be checked when calibration

coefficients have been determined by other procedures. As yet, no index of

complexity has been developed which could be used in determining optimum

calibration coefficients. This could be an area for further study.
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TABLE TN.2

ANALYSIS OF COMBINED MEAN PRODUCT MATRIX

EIGENVALUES

Simulation System Type 2, Run 1

Calibration Coefficients

a - .00 b - 1.000

Dimension Value Difference

Calibration Coefficients

a - 16.11 b - .795

Dimension Value Difference

1 267.7 1 253.7
191.4 193.3

2 76.3 2 60.4
28.2 58.7

3 48.1 3 1.7
17.6 1.5

4 30.5 4 .2

9.5 .0
5 21.0 5 .2

14.7 .0
6 6.3 6 .2

1.2 .1

5.1 7 .1

1.6 .o
8 3.5 8 .1

1.7 .0
9 1.8 9 .1

.1 .0
10 1.7 10 .1

.7 .0
11 1.0 11 .1

.1 .0
12 .9 12 .1

.5 .0
13 .4 13 .1

.1 .0
14 .3 14 .1

.1 .0
15 .2 15 .1
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TABLE TN.3

ANALYSIS OF COMBINED MEAN PRODUCT MATRIX

EIGENVECTORS

Simulation System Type 2, Run 1

Calibration Coefficients

a - .00 b - 1.000

Dimension

Trial 1 2 3

Calibration Coefficients

a - 16.11 b - .795

Dimension

Trial 1 2 3

1 .16 -.29 .24 1 .20 -.34 .51

2 .25 -.36 .30 2 .29 -.40 .35

3 .25 -.29 .19 3 .32 -.34 .06

4 .11 .14 .36 4 .33 -.24 -.15

5 .36 -.22 .23 5 .32 -.14 -.26

6 .10 .02 -.18 6 .30 -.04 -.31

7 .28 .02 .05 7 .29 .04 -.29

8 .36 -.29 -.36 8 .27 .11 -.24

9 .28 .36 .33 9 .25 .17 -.16

10 .27 .12 -.1 10 .23 .21 -.05

11 .16 .26 -.22 11 .22 .25 .04

12 .29 .19 -.07 12 .21 .28 .13

13 .35 -.11 -.45 13 .20 .30 .23

14 .25 .48 .21 14 .19 .32 .28

15 .23 .25 -.24 15 .19 .33 .25
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Figure TN.1 . Graphs of eigenvectors of combined mean product matrices.
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VII Procedures for generation of simulated scores

Random scores with a triangular distribution are used in a number of

places in the generation of random scores. The reason for this choice is

that in almost all situations there is a restriction that scores be

positive. It is convenient to use scores with defined ranges. Let s be a

generalized random score which is to be distributed triangularly in the

range from st to su. Two random p's, pi and p2, are drawn from a

rectangular distribution with a range 0 - 1 . Then:

where

s = ad 4- bd(P1 + P2)

ad = St

1bd = (su - st)

(TN-I3)

A negative exponential learning function is used in simulation system

types 1, 2, and 3. Let xk be a general skill score at trial k. The

negative exponential learning function is:

xx
ec(d k)

(TN-16)

where u is the asymptotic value of x , c and d are individual parameters.

A necessary inequality for this learning function is that:

u > xl > 0 (TN-17)



where x1 is the skill score of the individual on the first trial. For each

individual a first trial score and an asymptotic score are drawn randomly

such that the inequality of equation (TN-17) holds. With the triangularly

distributed scores, the ranges for x/ and u should not overlap, with the

range for u being higher than the range for xl. Parameters c and d are

determined by:

c = ln(u) - ln(u - x1) (TN-18)

= [1n(u)]/c (TN-19)

Simulation system type 1 is quite simple involving a single skill

score for each individual which increases with trials of either task level

1 or task level 2 following a negative exponential learning function.

Scaling coefficients fl and g) are set to 0 and 1 for task level 1. Scaling

coefficients f2 and g2 are parameters for the particular run. No

measurement error was added to the true task scores. The program of review

and look ahead was not implemented.

Simulation system type 2 is very similar to simulation system type 1.

In this second system error of measurement is added to the true task scores

and the program of review and look ahead is implemented.

Simulation system type 3 introduces a complexity in generation of

scores. In addition to a general skill there is a specific skill for each

task level so that the skill score for each task is a combination of the

general skill and the specific skill for that task. The general skill

increases with every trial while the specific skill for a task level
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increases only with practice at that task level. This introduces some

programing complexities due to the need to keep track of the number of

trials for each level of task.

Let hm be the trial number for task level m. Then:

k hl + h2
(TN-20)

Let zak be the general skill score at trial k and ze,,th be the specific skill

score for task level m at trial hm. A linear composite of these scores

produces the task skill score.

Xmk = WginhZ6k Wsrth Zsrnh (TN-21)

where wgmh is the weig't for the general skill at trial hm for task level m

and wmfli., is the weighs, specific skill for task level m at trial hm for

that task level. The general skill score and each of the specific skill

scores increase by the negative exponential learning function using the

appropriate number of trials, k for the general skill score and hm for each

of the specific skill scores. There are separate individual parameters for

the general skills learning function and the specific skills learning

function. The weights are adjusted for each task level so that the

'dependence on the specific skill reduces and the weight for the general

skill increases as practice continues:

wgmh = hm/(hm + 1) (TN-22)
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w.rth = 1/(h. + 1) . (TN-23)

These weights sum to unity.

The scaling parameters, addition of errors of measurement, and program

of review and look ahead are as in simulation system type 2.

Simulation system type 4 is a variant in which different individuals

follow different learning functions. The negative exponential learning

curve is not used. Instead, a table of learning functions is read in and a

choice is made for each individual as to which learning function is to be

followed. Let matrix Z contain the learning functions with a row for each

trial and a column for each learning function. For each individual there

are two parameters: j, equal to the learning function to be used, and a

multiplier, w. Parameter j is a random digit. (Equal probabilities for 1

and 2 were used). Parameter w is a random value in a defined range. The

trial skill score is:

Xmk = Zikw (TN-24)

In all other aspects, .simulation system type 4 is lige simulation system

type 2.


